Src/STAT3-dependent heme oxygenase-1 induction mediates chemoresistance of breast cancer cells to doxorubicin by promoting autophagy
نویسندگان
چکیده
Chemotherapeutic resistance in breast cancer, whether acquired or intrinsic, remains a major clinical obstacle. Thus, increasing tumor cell sensitivity to chemotherapeutic agents will be helpful in improving the clinical management of breast cancer. In the present study, we found an induction of HO-1 expression in doxorubicin (DOX)-treated MDA-MB-231 human breast adenocarcinoma cells, which showed insensitivity to DOX treatment. Knockdown HO-1 expression dramatically upregulated the incidence of MDA-MB-231 cell death under DOX treatment, indicating that HO-1 functions as a critical contributor to drug resistance in MDA-MB-231 cells. We further observed that DOX exposure induced a cytoprotective autophagic flux in MDA-MB-231 cells, which was dependent on HO-1 induction. Moreover, upregulation of HO-1 expression required the activation of both signal transducer and activator of transcription (STAT)3 and its upstream regulator, protein kinase Src. Abrogating Src/STAT3 pathway activation attenuated HO-1 and autophagy induction, thus increasing the chemosensitivity of MDA-MB-231 cells. Therefore, we conclude that Src/STAT3-dependent HO-1 induction protects MDA-MB-231 breast cancer cells from DOX-induced death through promoting autophagy. In the following study, we further demonstrated the contribution of Src/STAT3/HO-1/autophagy pathway activation to DOX resistance in another breast cancer cell line, MDA-MB-468, which bears a similar phenotype to MDA-MB-231 cells. Therefore, activation of Src/STAT3/HO-1/autophagy signaling pathway might play a general role in protecting certain subtypes of breast cancer cells from DOX-induced cytotoxicity. Targeting this signaling event may provide a potential approach for overcoming DOX resistance in breast cancer therapeutics.
منابع مشابه
نقش سیستم هم اکسیژناژ بر روی رشد تومور ملانوما در موش های نژاد C57Bl6
Background and Objective: Some evidence about the relationship between heme oxygenase and many cancers is available. Heme oxygenase has anti-apoptotic effects and contributes to tumor growth. The aim of this study was to evaluate the effect of heme oxygenase on melanoma tumor cells mitosis and tumor size in C57BL/6 mice. Materials and Methods: B16F10 melanoma cells were injected subcutaneously ...
متن کاملInduction of Heme Oxygenase -1 By Lipocalin 2 Mediated By Nf-Kb Transcription Factor
Purpose: Effect of lipocalin 2 on the expression of heme oxygenase I , II and NF-kB transcription factor was the purpose of this survey. Materials and Methods: Lcn2 was cloned to pcDNA3.1 plasmid by using genetic engineering method. The recombinant vector was transfected to CHO and HEK293T to establish stable cell expressing lipocalin 2. The presence of lipocalin 2 gene in these cells was confi...
متن کاملQuercetin Synergistically Enhances the Anticancer Efficacy of Docetaxel through Induction of Apoptosis and Modulation of PI3K/AKT, MAPK/ERK, and JAK/STAT3 Signaling Pathways in MDA-MB-231 Breast Cancer Cell Line
Docetaxel is widely used in the treatment of metastatic breast cancer. However, its effectiveness is limited due to chemoresistance and its undesirable side effects. The combination of chemotherapeutic agents and natural compounds is an effective strategy to overcome drug resistance and the ensuing inevitable toxicities. Quercetin is a natural flavonoid with strong antioxidant and anticancer ac...
متن کاملThe Expression of Heme Oxygenase-1 in Human-Derived Cancer Cell Lines
Background: Heme oxygenase-1 (HO-1) is a cytoprotective and antiapoptotic enzyme, which has been involved in maintaining cellular homeostasis, and plays an important protective role by modulating oxidative injury. Up-regulation of (HO-1) has contributed to tumorogenicity of some cancers. In this study we investigated the expression pattern of the HO-1, in five different human-derived cancer cel...
متن کاملCyclo-Oxygenase 2 Modulates Chemoresistance in Breast Cancer Cells Involving NF-κB
BACKGROUND Breast cancer cells can develop chemoresistance after prolonged exposure to cytotoxic drugs due to expression of the multi drug resistance (MDR) 1 gene. Type 2 cyclo-oxygenase (COX-2) inhibitors reverse the chemoresistance phenotype of a medullary thyroid carcinoma cell line, TT, and of a breast cancer cell line, MCF7, by inhibiting MDR1 expression and P-gp function. AIM investigat...
متن کامل